Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

Deepak Chopra, ${ }^{\text {a }}$ T. P. Mohan ${ }^{\text {b }}$ and B Vishalakshi ${ }^{\text {b }}$
${ }^{\text {a }}$ Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India, and ${ }^{\mathbf{b}}$ Department of Chemistry, Mangalore University, Bangalore 574 199, India

Correspondence e-mail:
deepak@sscu.iisc.ernet.in

## Key indicators

Single-crystal X-ray study
$T=290 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
$R$ factor $=0.046$
$w R$ factor $=0.128$
Data-to-parameter ratio $=12.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
## 1-Acetyl-3-(4-chlorophenyl)-5-(4-fluoro-3-phenoxyphenyl)-1H-pyrazole

In the title compound, $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{ClFN}_{2} \mathrm{O}_{2}$, the dihedral angles between the pyrazole ring and the attached chlorophenyl ring, the planar acetyl group and the fluorobenzene ring of the phenoxyphenyl unit are 3.3 (1), 5.2 (2) and 74.9 (1) ${ }^{\circ}$, respectively. The crystal structure is stabilized by intermolecular $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and a short $\mathrm{Cl} \cdots \mathrm{F}$ contact.

## Comment

Some pyrazoles are known to possess considerable antimicrobial, antiviral, antitumour, anti-inflammatory, antihistaminic and phytotoxic activities (Mahajan et al., 1991; Janus et al., 1999; Katayama \& Oshiyama, 1997; Badawey \& El-Ashmawey, 1998; Mishra et al., 1998; Bernard et al., 1985). As part of our ongoing interest in such compounds (Gloe et al., 2000), we report here the structure of the title compound, (I) (Fig. 1, Table 1).


The pyrazole ring of (I) is essentially planar, with a maximum deviation from the ring plane of 0.185 (2) $\AA$ for atom C13. The chlorophenyl substituent subtends an angle of $3.3(1)^{\circ}$ to this plane, while the fluorobenzene ring of the phenoxyphenyl unit is inclined at an angle of $74.9(1)^{\circ}$. There is some evidence for delocalization in the pyrazole ring: while the $\mathrm{C} 13-\mathrm{N} 1$ bond distance corresponds to a single bond, the $\mathrm{N} 1-\mathrm{N} 2$ bond is short and compares well with similar values reported in the literature (Hökelek, Kilic \& Hayvali, 2002; Hökelek, Kilic, Isikalan et al., 2002).

In the crystal structure, $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ intermolecular interactions form molecular chains along the crystallographic screw axis and in the $c$-glide plane (Fig. 2, Table 2). Furthermore, a short Cl1 $\cdots \mathrm{F} 1$ contact [ 3.231 (2) $\AA$; symmetry code $\left(-x+\frac{1}{2}\right.$, $y-\frac{1}{2},-z+\frac{3}{2}$ )] provides additional stability (Fig. 2).

## Experimental

Single crystals of compound (I) (Mohan, 2006) were grown by slow evaporation of a solution in acetone at 275-277 K.
$\qquad$


Figure 1
A view of the title compound, with displacement ellipsoids drawn at the $50 \%$ probability level. H atoms have been omitted.


Figure 2
The $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions and the $\mathrm{Cl} \cdots \mathrm{F}$ short contact in the crystal structure (dotted lines). Other H atoms have been omitted for clarity.

## Crystal data

$\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{ClFN}_{2} \mathrm{O}_{2}$
$M_{r}=408.84$
Monoclinic, $P 2_{1} / n$
$a=14.577(10) \AA$
$b=9.342(6) \AA$
$c=14.994(10) \AA$
$\beta=96.237(11)^{\circ}$
$V=2030(2) \AA^{3}$

## Data collection

| Bruker SMART APEX CCD area- | 15482 measured reflections |
| :---: | :--- |
| detector diffractometer | 4216 independent reflections |
| $\varphi$ and $\omega$ scans | 3210 reflections with $I>2 \sigma(I)$ |
| Absorption correction: multi-scan | $R_{\text {int }}=0.020$ |
| $(S A D A B S ;$ Sheldrick, 1996 $)$ | $\theta_{\max }=27.3^{\circ}$ |
| $T_{\min }=0.894, T_{\max }=0.941$ |  |

$Z=4$
$D_{x}=1.338 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.22 \mathrm{~mm}^{-1}$
$T=290$ (2) K
Block, colourless
$0.41 \times 0.28 \times 0.28 \mathrm{~mm}$

## organic papers

Gloe, K., Uzoukwu, B.A., Rademacher \& O. (2000). Acta Cryst, C56, e580e581.
Hökelek, T., Kilic, Z. \& Hayvali, M. (2002). Anal. Sci. 18, 495-496.
Hökelek, T., Kilic, Z., Isikalan, M. \& Hayvali, M. (2002). Anal. Sci. 18, 215216.

Janus, S. L., Magdif, A. Z., Erik, B. P. \& Claus, N. (1999). Monatsh. Chem. 130, 1167-1174.
Katayama, H. \& Oshiyama, T. (1997). Can. J. Chem. 75, 913-919.
Mahajan, R. N., Havaldar, F. H. \& Fernandes, P. S. (1991). J. Indian Chem. Soc. 68, 245-246.

Mishra, P. D., Wahidullah, S. \& Kamat, S. Y. (1998). Indian J. Chem. B, 37, 199200.

Mohan, T. P. (2006). PhD Thesis, Mangalore University.
Sheldrick, G. M. (1996). SADABS (Version 2.03). University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Watkin, D. J., Pearce, L. J. \& Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.


[^0]:    (C) 2006 International Union of Crystallography All rights reserved

